Sparse Suffix and LCP Array:
Simple, Direct, Small, and Fast

Lorraine A. K. Ayad!, Grigorios Loukides?,
Solon P. Pissis3#, Hilde Verbeek3

1Brunel University London, UK
2King's College London, UK
3CWI, Amsterdam, Netherlands
4Vrije Universiteit, Amsterdam, Netherlands

LATIN 2024
Puerto Varas, 20 March 2024

Introduction

[1o}

Suffix trees

@ Indexing large amounts of text or DNA requires small data
structures and fast algorithms

@ Suffix tree: compacted trie of all suffixes of a string

Example (Suffix tree of “banana”)

Introduction
oe

Suffix trees

Example (Finding all occurrences of “na” in “banana”)

Introduction
[]

Suffix array and LCP array

Suffix array: all suffixes of the string sorted lexicographically
LCP array: longest common prefix of two consecutive suffixes

°
°
@ Correspondence with suffix tree
@ Takes less space in practice

Example (Suffix tree, suffix array and LCP array of “banana”)

i | suffix SA[i] | LCP[i]
1| a 6 0
2 | ana 4 1
3 | anana 2 3
4 | banana 1 0
5| na 5 0
6 | nana 3 2

Introduction
[]

Sparse suffix and LCP array

@ Let B be a set of positions in some input string T
e e.g. string anchors or naturally interesting positions in text

@ Sparse suffix array: suffixes starting at positions in B, sorted

@ Sparse LCP array: longest common prefixes of SSA

Example (Sparse suffix and LCP array of “abracadabra”)

Let T = abracadabra and B = {1,5,6,8}. The relevant suffixes
are abracadabra, cadabra, adabra, abra. Sorting these gives:

i | suffix | SSA[i] | SLCPJi]
1 | abra 8 0
2 | abracadabra 1 4
3 | adabra 6 1
4 | cadabra 5 0

Introduction
[ele}

Sparse Suffix Sorting

SPARSE SUFFIX SORTING

Given: string T € X", set B of b indices in [1, n]
Asked: the arrays SSA and SLCP

@ Building the full suffix and LCP array takes too much space
@ Can we design an algorithm

running in (near-)linear time,

using O(b) space,

that constructs SSA and SLCP more or less directly,

and is simple to understand and implement?

Introduction
(o] lo}

Sparse Suffix Sorting

Time Space Notes
Karkkainen, Sanders, and Burkhardt 2006
O(n?/s) O(s) fors € [b,n]
Bille et al. 2016
O(nlog? b) O(b) Monte Carlo
O(nlog? n+ b? log b) O(b) Las Vegas
I, Karkkainen, and Kempa 2014
O(n+ (bn/s)logs) O(b) Monte Carlo
O(nlog b) O(b) Las Vegas
Gawrychowski and Kociumaka 2017
O(n) O(b) Monte Carlo
O(ny/log b) O(b) Las Vegas
Birenzwige, Golan, and Porat 2020
O(n) O(b) Las Vegas
O(nlog 1) O(b) b=1Q(logn)

Fischer, I, and Képpl 2020

O(cy/logn+ blogblognlog*n) O(b) “Restore” model
Prezza 2021
O(n+ blog? n) O(1) Restore model, Monte Carlo

Table: Existing algorithms for Sparse Suffix Sorting

Introduction
ooe

Sparse Suffix Sorting

Our contributions:

@ an O(nlog b) time algorithm that uses 8b + o(b) machine
words of space

@ an improved version, that runs in O(n) time if the number of
suffixes with long LCPs is sufficiently small

@ proof that SSA and SLCP of a random string can be
computed in linear time

Main algorithm
[o]

Overview

@ Based on work by | et al.!

e constructs the sparse suffix tree, from which one could extract
SSA and SLCP

@ Our contribution: implement using an array-based approach
rather than a tree, which saves time and space in practice

Example (Sparse suffix tree, sparse suffix array and LCP array)

i | suffix | SSA[i] | SLCPJi]
1 | abra 8 0
2 | abracadabra 1 4
3 | adabra 6 1
4 | cadabra 5 0

11, Kirkki3inen, and Kempa 2014

Main algorithm
oe

Overview

© lteratively create the hierarchy of LCP groups
@ Sort the entries of each LCP group
© Build SSA and SLCP based on the LCP groups

Definition (LCP group)
An LCP group is a triple (id, {b1,..., bk}, lcp) where
@ id is its unique identifier
@ bi,..., by are each either an entry from B (indicating a
suffix) or the id of another LCP group

@ all suffixes in the group have a common prefix of at least /cp
characters)

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)
12 3 4 5 6

17,{1,2,3,4,5,6},0)

Start with one group having an LCP value of 0. We will refine the
groups for decreasing powers of 2, starting at 16.

If some suffixes have a common prefix, they will be put together
into a new group.

We check for matches using Karp-Rabin fingerprints and a hash
table.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)
12 3 4 5 6

17,{1,2,3,4,5,6},0)

Prefixes of length 16:

: caterpillarcapil
»aterpillarcapill
s pillarcapillary$
: arcapillary$

: pillary$

ary$

SO A WN

(no match)

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)
12 3 4 5 6

7,{1,2,3,4,5,6},0]

Prefixes of length 8:

1: caterpil
2: aterpill
3: pillarca
4: arcapill
5: pillary$
6: ary$

(still no match)

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)
12 3 4 5 6

7,{1,2,3,4,5,6},0]

Prefixes of length 4:

cate
ater
pill
arca
pill
ary$

SR

Suffixes 3 and 5 have a common prefix of length 4.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(8

7,{1,2,4,6,8},0 |8, {3,5} 4|

Prefixes of length 4:

cate
ater
pill
arca
pill
ary$

SR

Create a new group for suffixes 3 and 5.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(8

7,{1,2,4,6,8},0|8, {3,5} 4|

Extend prefixes by 2:

1: ca 3: (pill)ar
2: at 5: (pill)ar
4: ar

6: ar

8: pi (*)

Suffixes 4 and 6 in group 7 have a common prefix of length 2, and
suffixes 3 and 5 in group 8 have a common prefix of length 4 + 2.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(8) (€))

7,{1,2,8,9},0([8,{3,5},4| |9, {4,6},2|

Extend prefixes by 2:

1: ca 3: (pill)ar
2: at 5: (pill)ar
4: ar

6: ar

8: pi (*)

Create a new group for suffixes 4 and 6.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(8) (€))

7,{1,2,8,9},0((8,{3,5},6/|9,{4,6},2|

Extend prefixes by 2:

1: ca 3: (pill)ar
2: at 5: (pill)ar
4: ar

6: ar

8: pi (*)

Update the LCP value for group 8.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(8) (9

7,{1,2,8,9},0([8,{3,5},6/|9,{4,6},2|

Extend prefixes by 1:

1l: ¢ 3: (pillar)c 4: (ar)c
2:a 5: (pillar)y 6: (ar)y
8:p (*)
9: a (*)

Suffix 2 and group 9 in group 7 have a common prefix of length 1.

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(10) (8) (€))

7,{1,8,10},0]

8,{3,5},6/9,{4,6},2||10,{2,9},1]

Extend prefixes by 1:

c 3: (pillar)c 4: (ar)c
a 5: (pillar)y 6: (ar)y

P (*)
a

(*)

Create a new group for 2 and 9.

S

Main algorithm
@00

Step 1: building LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(10) (8) (€))

7,{1,8,10},0|

8,{3,5},6/9,{4,6},2||10,{2,9},1]

Now all the LCP values are correct, and step 1 is finished.

Main algorithm
(o] Jo}

Step 2: sorting the LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(10 (®))
7,{1,8,10},0|(8,{3,5},6/|9,{4,6},2|[10,{2,9} 1|
1. ¢ 3: (pillar)c 4: (ar)c 2: ()t
8 p 5: (pillar)y 6: (ar)y 9: (a)r
10: a

We already have all the LCP values, so we can compare suffixes by
just looking at the character after the LCP.

Main algorithm
(o] Jo}

Step 2: sorting the LCP groups

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(10) (8 9
7,{107178},0‘ 8,{3,5},6\\9,{4,6},2\\10,{9,2},1\
1. ¢ 3: (pillar)c 4: (ar)c 2: ()t
8 p 5: (pillar)y 6: (ar)y 9: (a)r
10: a

Sort each LCP group using e.g. in-place MergeSort.

Step 3: building the SSA and SLCP

T=caterpillarcapillary$(n=20)

12 3 4 5 6
(10) (8 (9

7,{10,1,8},0]

8,{3,5},6/9,{4,6},2||10,{9,2}, 1|

Build SSA and SLCP using a depth-first search on the LCP group
hierarchy. The LCP value of two suffixes is that of their “lowest
common ancestor” group.

i | suffix SSA[i] | SLCPJi]
1 | arcapillary 4 0
2 | ary 6 2
3 | aterpillarcapillary 2 1
4 | caterpillarcapillary 1 0
5 | pillarcapillary 3 0
6 | pillary 5 6

Main algorithm
[]

Karp-Rabin fingerprints

Lemma (I, Karkkainen, and Kempa 2014)

Given a string T of length n and an integer s, we can create a
data structure of size O(s) in O(n) time that allows us to find the
KR-fingerprint of any length-k substring of T, in O(min{k,n/s})
time.

This is done by storing the fingerprints of length-n/s blocks of T
as a prefix-sum array and applying modular arithmetic on those
values to obtain the fingerprints of longer substrings.

Main algorithm
[Je]

Complexity

@ Pre-processing: O(n) time
e Step 1: O((bn/s) logs) time

o O(log n) rounds, O(b) fingerprints each round

o First log s rounds: long fingerprints, O((bn/s) log s)

o Last log n — log s: short fingerprints, amortized O(bn/s)
e Step 2: O(n) time

e Sorting O(b) items over at most b groups

e low b: merge sort; high b: radix sort
o Either case, O(n) time

e Step 3: O(b) time
o DFS over the O(b) groups and suffixes

Main algorithm
oe

Complexity

Given T € X", set B of b indices in [1, n] and an integer s € [b, n],
SSA and SLCP can be computed in O(n+ (bn/s)logs) time using
s+ 7b + o(b) machine words of space.

e If s = b, then O(nlog b) time and 8b + o(b) space

@ Implementing the LCP groups sequentially instead of as a tree
improves running time in practice

e Karp-Rabin fingerprints are randomized; the output is correct
with high probability

Parameterized algorithm
e0

Parameterized algorithm

@ Most suffixes will likely have short LCPs
@ Save time by starting at lower powers of 2

o Substrings shorter than n/s can be fingerprinted faster
o Some LCP values may be underestimated

@ We can easily identify the “incorrect” LCP values by looking
at the next character

@ All other suffixes are already at the right position in SSA

Parameterized algorithm
oe

Parameterized algorithm

Q@ Run the algorithm, starting at 21'°8 2 (and s = b)
o Longest LCP that can be found is ¢ = 2llog3]+1 _1

@ Identify suffixes that have LCP value ¢ and have the ¢ 4 1-th
character in common with their neighbor in SSA

© Run the algorithm again with all powers of 2, only on the
identified suffixes

@ Insert results of the second run in the same positions in SSA
and SLCP

Parameterized algorithm
[]

Example

Step 1: Sort up to £ = 7 positions in the first round.

Step 1 LCP*
gratuitous 0
harbingers
harborserv
harborseal
howevertha
hungrycate
integratio
integratin
integrated
omniscient

O N N O R H ~N b

Example

Step 2: Identify suffixes with actual LCP longer than /.

Step 1
gratuitous
harbingers
harborserv
harborseal
howevertha
hungrycate
integratio
integratin
integrated
omniscient

LCP*
0

O N N O~ = N &~ O

Parameterized algorithm
[]

Step 2

harborserv
harborseal

integratio
integratin
integrated

Parameterized algorithm
[]

Example

Step 3: Re-run the algorithm on just these suffixes.

Step 1 Lcp* Step 2 Step 3 LCP
gratuitous 0

harbingerso

harborserv : harborserv harborseal 0
harborseal ! harborseal harborserv 8
howevertha1

hungrycate ; 0
integratio ., integratio integrated
integratin integratin integratin
integrated ; integrated integratio

omniscient

Parameterized algorithm
[]

Example

Step 4: Insert re-sorted suffixes in the same positions.

Step 1 Lcp* Step 2 Step 3 Lce Step 4 LCP
gratuitous 0 gratuitous 0
harbingers ° harbingers °
harborserv : harborserv harborseal 0 harborseal :
harborseal ! harborseal harborserv 8 harborserv 8
howevertha ! howevertha !
hungrycate (1) 0 hungrycate (1)
integratio , integratio integrated integrated o
integratin integratin integratin integratin
integrated ; integrated integratio integratio 3
omniscient omniscient

Parameterized algorithm
°
Complexity

Let b’ be the number of incorrectly sorted suffixes
First round: O(n) (shorter fingerprints)

Second round: O(n+ (b'n/b) log b) (fewer suffixes)
Other steps: O(b)

If b of the suffixes have an associated LCP longer than ¢, SSA and
SLCP can be computed in O(n+ (b'n/b)log b) time using
8b + 4b' + o(b) machine words of space.

o If b = O(b/log b), this runs in O(n) time

@ In practice, b’ is often extremely small

Conclusion
[]

Conclusion

@ Sparse suffix sorting in O(n+ (bn/s) logs) time and
8b + o(b) space
e Made faster and smaller in practice by using lists

e O(n+ (b'n/b)log b) time, 8b+ 4b" + o(b) space on short
LCPs

e O(n) time if b' = O(b/ log b)
@ We proved that, on random strings, the SSA and SLCP can
be computed in linear time because the LCPs are short w.h.p.

References

References

[
B
[
[
B
[
[

Bille, Philip et al. (2016). “Sparse Text Indexing in Small Space”. In: ACM
Trans. Algorithms.

Birenzwige, Or, Shay Golan, and Ely Porat (2020). “Locally Consistent
Parsing for Text Indexing in Small Space”. In: SODA 2020.

Fischer, Johannes, Tomohiro I, and Dominik K&ppl (2020). “Deterministic
Sparse Suffix Sorting in the Restore Model”. In: ACM Trans. Algorithms.
Gawrychowski, Pawel and Tomasz Kociumaka (2017). “Sparse Suffix Tree
Construction in Optimal Time and Space”. In: SODA 2017.

I, Tomohiro, Juha Karkk3inen, and Dominik Kempa (2014). “Faster Sparse
Suffix Sorting”. In: STACS 2014.

Karkkainen, Juha, Peter Sanders, and Stefan Burkhardt (2006). “Linear
work suffix array construction”. In: J. ACM.

Prezza, Nicola (2021). “Optimal Substring Equality Queries with
Applications to Sparse Text Indexing”. In: ACM Trans. Algorithms.

	Introduction
	Suffix trees
	Suffix array and LCP array
	Sparse suffix and LCP array
	Sparse Suffix Sorting

	Main algorithm
	Overview
	Example
	Karp-Rabin fingerprints
	Complexity

	Parameterized algorithm
	Parameterized algorithm
	Example
	Complexity

	Conclusion
	Conclusion
	References

	References

