Introduction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast

Lorraine A. K. Ayad¹, Grigorios Loukides², Solon P. Pissis^{3,4}, <u>Hilde Verbeek³</u>

¹Brunel University London, UK
 ²King's College London, UK
 ³CWI, Amsterdam, Netherlands
 ⁴Vrije Universiteit, Amsterdam, Netherlands

LATIN 2024 Puerto Varas, 20 March 2024

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
●000000	00000000	0000	O	
Suffix trees				

- Indexing large amounts of text or DNA requires small data structures and fast algorithms
- Suffix tree: compacted trie of all suffixes of a string

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
○●○○○○○	00000000	0000	O	
Suffix trees				

Introduction	Main algorithm 00000000	Parameterized algorithm 0000	Conclusion O	References
Suffix array	and LCP arra	θV		

- Suffix array: all suffixes of the string sorted lexicographically
- LCP array: longest common prefix of two consecutive suffixes
- Correspondence with suffix tree
- Takes less space in practice

Example (Suffix tree, suffix array and LCP array of "banana")					
\wedge	i	suffix	SA[<i>i</i>]	LCP[<i>i</i>]	
a na hanana\$	1	а	6	0	
	2	ana	4	1	
\$ na ¹ \$ na\$	3	anana	2	3	
$6 \qquad 5 \qquad 3$	4	banana	1	0	
\$na\$	5	na	5	0	
	6	nana	3	2	

Introduction	Main algorithm 00000000	Parameterized algorithm	Conclusion O	References
Sparse suffi	x and LCP ar	ray		

- Let B be a set of positions in some input string T
 - e.g. string anchors or naturally interesting positions in text
- Sparse suffix array: suffixes starting at positions in B, sorted
- Sparse LCP array: longest common prefixes of SSA

Example (Sparse suffix and LCP array of "abracadabra")

Let T = abracadabra and $B = \{1, 5, 6, 8\}$. The relevant suffixes are abracadabra, cadabra, adabra, abra. Sorting these gives:

i	suffix	SSA[<i>i</i>]	SLCP[<i>i</i>]
1	abra	8	0
2	abracadabra	1	4
3	adabra	6	1
4	cadabra	5	0

Introduction ○○○○●○○	Main algorithm 00000000	Parameterized algorithm	Conclusion O	References
Sharse Su	ffix Sorting			

Sparse Suffix Sorting

Given: string $T \in \Sigma^n$, set *B* of *b* indices in [1, n]**Asked:** the arrays SSA and SLCP

- Building the full suffix and LCP array takes too much space
- Can we design an algorithm
 - running in (near-)linear time,
 - using $\mathcal{O}(b)$ space,
 - that constructs SSA and SLCP more or less directly,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• and is simple to understand and implement?

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
○○○○○●○	00000000	0000	O	
Sparse Suf	fix Sorting			

Time	Space	Notes
Kärkkäinen, Sande	rs, and B	Burkhardt 2006
$\mathcal{O}(n^2/s)$	$\mathcal{O}(s)$	for $s \in [b, n]$
Bille	et al. 201	.6
$\mathcal{O}(n\log^2 b)$	$\mathcal{O}(b)$	Monte Carlo
$\mathcal{O}(n\log^2 n + b^2\log b)$	$\mathcal{O}(b)$	Las Vegas
I, Kärkkäinen	, and Kei	mpa 2014
$\mathcal{O}(n + (bn/s)\log s)$	$\mathcal{O}(b)$	Monte Carlo
$\mathcal{O}(n \log b)$	$\mathcal{O}(b)$	Las Vegas
Gawrychowski a	nd Kociu	ımaka 2017
$\mathcal{O}(n)$	$\mathcal{O}(b)$	Monte Carlo
$\mathcal{O}(n\sqrt{\log b})$	$\mathcal{O}(b)$	Las Vegas
Birenzwige, Go	lan, and	Porat 2020
$\mathcal{O}(n)$	$\mathcal{O}(b)$	Las Vegas
$\mathcal{O}(n \log \frac{n}{b})$	$\mathcal{O}(b)$	$b = \Omega(\log n)$
Fischer, I,	and Köpp	ol 2020
$\mathcal{O}(c\sqrt{\log n} + b\log b\log n\log^* n)$	$\mathcal{O}(b)$	"Restore" model
Pre	zza 2021	
$\mathcal{O}(n+b\log^2 n)$	$\mathcal{O}(1)$	Restore model, Monte Carlo

Table: Existing algorithms for Sparse Suffix Sorting

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our contributions:

- an O(n log b) time algorithm that uses 8b + o(b) machine words of space
- an improved version, that runs in $\mathcal{O}(n)$ time if the number of suffixes with long LCPs is sufficiently small

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• proof that SSA and SLCP of a random string can be computed in linear time

Introduction 0000000	Main algorithm ●0000000	Parameterized algorithm	Conclusion O	References
Overview				

- Based on work by I et al.¹
 - constructs the sparse suffix tree, from which one could extract SSA and SLCP
- Our contribution: implement using an array-based approach rather than a tree, which saves time and space in practice

Example (Sparse suffix tree, sparse suffix array and LCP array)					
a 🔨	i	suffix	SSA[<i>i</i>]	SLCP[<i>i</i>]	
bra	1	abra	8	0	
\bigwedge	2	abracadabra	1	4	
\$ cadabra\$ dabra\$ cadabra\$	3	adabra	6	1	
8 1 6 5	4	cadabra	5	0	

¹I, Kärkkäinen, and Kempa 2014

Introduction 0000000	Main algorithm ○●○○○○○○	Parameterized algorithm	Conclusion O	References
Overview				

- Iteratively create the hierarchy of LCP groups
- Sort the entries of each LCP group
- Build SSA and SLCP based on the LCP groups

Definition (LCP group)

An LCP group is a triple $(id, \{b_1, \ldots, b_k\}, lcp)$ where

- id is its unique identifier
- b₁,..., b_k are each either an entry from B (indicating a suffix) or the id of another LCP group
- all suffixes in the group have a common prefix of at least *lcp* characters

Introduction	Main algorithm	Parameterized algorithm	Conclusion References
0000000	○○●○○○○○	0000	
Step 1: buil	lding LCP gro	ups	
T = c a	terpill	arcapilla	r y \$ (n = 20)
1 2	3	4 5 6	

 $7,\{1,2,3,4,5,6\},0$

Start with one group having an LCP value of 0. We will refine the groups for decreasing powers of 2, starting at 16. If some suffixes have a common prefix, they will be put together into a new group.

We check for matches using Karp-Rabin fingerprints and a hash table.

Introduction 0000000	Main algorithm ○○●○○○○○	Parameterized algorithm	Conclusion O	References
Step 1: ł	ouilding LCP §	groups		
T = c	a t e r p i l	larcapill	a ry\$(<i>n</i> =	= 20)

4

5

6

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $7,\{1,2,3,4,5,6\},0$

1 2

3

Prefixes of length 16:

1: caterpillarcapil
2: aterpillarcapill
3: pillarcapillary\$
4: arcapillary\$
5: pillary\$
6: ary\$

(no match)

Introductio		Ma 00	in algo ●0000	rithm	1			Pa	aram 000	eteri	zed a	algor	ithm				Co O	nclus		References
Step	1: bu	ildi	ng	LC	CP	g	çrc	ou	ps											
Т	= c a 1 2	t	e r	р 3	i	1	1	a 4	r	с	a	р 5	i	1	1	a 6	r	у	\$ (<i>n</i> = 2	0)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $7, \{1, 2, 3, 4, 5, 6\}, 0$

Prefixes of length 8:

- 1: caterpil
- 2: aterpill
- 3: pillarca
- 4: arcapill
- 5: pillary\$
- 6: ary\$

(still no match)

Introductio		Main algo ○○●○○○	orithm 00	Para 000	ameterized a	algorithm	Concl O		References
Step	1: bu	ilding	LCP	group	S				
Т	= c a 1 2	ter	pil 3	.la: 4	rca	pil 5	lary 6	\$ (<i>n</i> = 20))

 $7, \{1, 2, 3, 4, 5, 6\}, 0$

Prefixes of length 4:

- 1: cate
- 2: ater
- 3: pill
- 4: arca
- 5: pill
- 6: ary\$

Suffixes 3 and 5 have a common prefix of length 4.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction 0000000	Main algorithm ○○●○○○○○	Parameterized algorithm 0000	Conclusion References O
Step 1: buil	lding LCP gro	ups	
T = c a 1 2	terpill 3 (8)	arcapill 4 5	ary\$(n=20) 6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $7, \{1, 2, 4, 6, \frac{8}{8}\}, 0 | 8, \{3, 5\}, 4$

Prefixes of length 4:

- 1: cate
- 2: ater
- 3: pill
- 4: arca
- 5: pill
- 6: ary\$

Create a new group for suffixes 3 and 5.

Introduction 0000000		Main ○○●⊄	algorit	hm			Pa oc	ram 000	eteri	zed a	algor	ithm				Con O		ion	References
Step 1	: bu	ildin	g L	.CF	ې و	gro	u	ps											
<i>T</i> =	c a 1 2	te	r	p i 3 8)	1	1	a 4	r	с	a	р 5	i	1	1	a 6	r	у	\$ (<i>n</i> = 20))

$$\fbox{(3,5),4}{(3,5),4}$$

Extend prefixes by 2:

```
1: ca 3: (pill)ar

2: at 5: (pill)ar

4: ar

6: ar

8: pi (*)
```

Suffixes 4 and 6 in group 7 have a common prefix of length 2, and suffixes 3 and 5 in group 8 have a common prefix of length 4 + 2.

Introduction 0000000	Main algorithm ○○●○○○○○	Parameterized algorithm 0000	Conclusion O	References
Step 1: b	ouilding LCP	groups		
Ŧ			ф (00)

$$T = c a t e r p i l l a r c a p i l l a r y \$ (n = 20)$$

$$1 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

$$7, \{1, 2, 8, 9\}, 0 \ 8, \{3, 5\}, 4 \ 9, \{4, 6\}, 2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Extend prefixes by 2:

```
1: ca 3: (pill)ar

2: at 5: (pill)ar

4: ar

6: ar

8: pi (*)
```

Create a new group for suffixes 4 and 6.

Introduction 0000000	Main algorithm	Parameterized algorithm 0000	Conclusion O	References
Step 1: b	ouilding LCP §	groups		

$$T = \begin{array}{c} \mathbf{c} & \mathbf{a} & \mathbf{t} & \mathbf{e} & \mathbf{r} & \mathbf{p} & \mathbf{i} & \mathbf{l} & \mathbf{a} & \mathbf{r} & \mathbf{c} & \mathbf{a} & \mathbf{p} & \mathbf{i} & \mathbf{l} & \mathbf{a} & \mathbf{r} & \mathbf{y} & \$ & (n = 20) \\ 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 7, \{1, 2, 8, 9\}, \mathbf{0} & 8, \{3, 5\}, \mathbf{6} & 9, \{4, 6\}, 2 \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Extend prefixes by 2:

```
1: ca 3: (pill)ar
2: at 5: (pill)ar
4: ar
6: ar
8: pi (*)
```

Update the LCP value for group 8.

Introduction 0000000	Main algorithm ○○●○○○○○	Parameterized algorithm 0000	Conclusion O	References
Step 1: bui	ilding LCP gro	oups		
_				~ ~ `

I = c a 1 2	tei	rpi <u>3</u> (8)	11ar 4 (9)	capi 5	11	ar 6	y \$ (<i>n</i> = 20)
7, {1, 2, 8	8,9},0	8, {	3,5},69	, {4,6},2			

Extend prefixes by 1:

1: c 3: (pillar)c 4: (ar)c 2: a 5: (pillar)y 6: (ar)y 8: p(*) 9: a(*)

Suffix 2 and group 9 in group 7 have a common prefix of length 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 0000000	Main algo ○○●○○○	orithm 00	Parar 0000	meterized a O	algorithm		Conclusion O			
Step 1	: building	LCP gr	oups	5						
<i>T</i> =	cater 12 (10)	p i l l 3 (8)	a r 4 (9)	са	pi 5	11a 6	r y \$ (<i>n</i> = 20))		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$7, \{1, 8, 10\}, 0 \ \ 8, \{3, 5\}, 6 \ \ 9, \{4, 6\}, 2 \ \ 10, \{2, 9\}, 1$$

Extend prefixes by 1:

1: c 3: (pillar)c 4: (ar)c 2: a 5: (pillar)y 6: (ar)y 8: p(*) 9: a(*)

Create a new group for 2 and 9.

Introduction 0000000	Main algo ○○●○○○	rithm ⊃⊙	Paramete 0000	erized algorithm	Conclusion O	References
Step 1	: building	LCP gro	oups			
T =	cater 12 (10)	p i l l 3 (8)	arc 4 (9)	capil 5	lary\$(<i>n</i> = 6	= 20)

 $\fbox{(3,1,8,10),0[8,\{3,5\},6]9,\{4,6\},2[10,\{2,9\},1]}$

Now all the LCP values are correct, and step 1 is finished.

ntroduction	Main algorithm ○○○●○○○○	Parameterized algorithm	Conclusion O	References
Step 2: so	orting the LCI	P groups		
T = c	aterpil 23 10) (8)	larcapil 45	l a r y \$ (n = 6	= 20)
7, {1,8	,10},0 8,{3,5}	,6 9, {4,6},2 10,	$\{2,9\},1$	
1: c 8: p 10: a	3: (pillar)c 5: (pillar)y	4: (ar)c 6: (ar)y	2: (a)t 9: (a)r	

We already have all the LCP values, so we can compare suffixes by just looking at the character after the LCP.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

ntroduction	Main algorithm ○○○●○○○○	Parameterized algorithm 0000	Conclusion O	References
Step 2: so	orting the LC	P groups		
T = c	aterpil 2 3 10) (8)	larcapil 45 (9)	l a r y \$ (n = 6	= 20)
7, { <mark>10</mark> ,	1,8 },0 8,{3,5}	$\{, 6 \ 9, \{4, 6\}, 2 \ 10, $	{9,2} ,1	
1: c 8: p 10: a	3: (pillar)c 5: (pillar)y	4: (ar)c 6: (ar)y	2: (a)t 9: (a)r	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sort each LCP group using e.g. in-place MergeSort.

Introduction 0000000	Main algo ○○○○●○	orithm 00	Parameterized a	algorithm	Conclusion O	References
Step 3:	building	the SSA	and SL	.CP		
T =	cater 12 (10)	p i l l 3 (8)	arca 4 (9)	pill 5	ary\$(n=20 6))

$$\fbox{7,\{10,1,8\},0[8,\{3,5\},6[9,\{4,6\},2][10,\{9,2\},1]]}$$

Build SSA and SLCP using a depth-first search on the LCP group hierarchy. The LCP value of two suffixes is that of their "lowest common ancestor" group.

i	suffix	SSA[i]	SLCP[<i>i</i>]		
1	arcapillary	4	0		
2	ary	6	2		
3	aterpillarcapillary	2	1		
4	caterpillarcapillary	1	0		
5	pillarcapillary	3	0		
6	pillary	5	6 • • • 6	≅▶ ★ ≣ ▶	æ

Karp-Rabin fingerprints

Lemma (I, Kärkkäinen, and Kempa 2014)

Given a string T of length n and an integer s, we can create a data structure of size $\mathcal{O}(s)$ in $\mathcal{O}(n)$ time that allows us to find the KR-fingerprint of any length-k substring of T, in $\mathcal{O}(\min\{k, n/s\})$ time.

This is done by storing the fingerprints of length-n/s blocks of T as a prefix-sum array and applying modular arithmetic on those values to obtain the fingerprints of longer substrings.

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	○○○○○●○	0000	O	
Complexity				

- Pre-processing: $\mathcal{O}(n)$ time
- Step 1: $\mathcal{O}((bn/s)\log s)$ time
 - $\mathcal{O}(\log n)$ rounds, $\mathcal{O}(b)$ fingerprints each round
 - First log s rounds: long fingerprints, $\mathcal{O}((bn/s)\log s)$
 - Last log $n \log s$: short fingerprints, amortized $\mathcal{O}(bn/s)$

- Step 2: $\mathcal{O}(n)$ time
 - Sorting $\mathcal{O}(b)$ items over at most b groups
 - low b: merge sort; high b: radix sort
 - Either case, $\mathcal{O}(n)$ time
- Step 3: $\mathcal{O}(b)$ time
 - DFS over the $\mathcal{O}(b)$ groups and suffixes

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	○○○○○○●	0000	O	
Complexity				

Theorem

Given $T \in \Sigma^n$, set B of b indices in [1, n] and an integer $s \in [b, n]$, SSA and SLCP can be computed in $\mathcal{O}(n + (bn/s)\log s)$ time using s + 7b + o(b) machine words of space.

- If s = b, then $\mathcal{O}(n \log b)$ time and 8b + o(b) space
- Implementing the LCP groups sequentially instead of as a tree improves running time in practice
- Karp-Rabin fingerprints are randomized; the output is correct with high probability

Parameterized algorithm

- Most suffixes will likely have short LCPs
- Save time by starting at lower powers of 2
 - Substrings shorter than n/s can be fingerprinted faster
 - Some LCP values may be underestimated
- We can easily identify the "incorrect" LCP values by looking at the next character

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• All other suffixes are already at the right position in SSA

Parameterized algorithm

- Run the algorithm, starting at $2^{\lfloor \log \frac{n}{b} \rfloor}$ (and s = b)
 - Longest LCP that can be found is $\ell = 2^{\lfloor \log \frac{n}{b} \rfloor + 1} 1$
- 3 Identify suffixes that have LCP value ℓ and have the $\ell + 1$ -th character in common with their neighbor in SSA
- Run the algorithm again with all powers of 2, only on the identified suffixes
- Insert results of the second run in the same positions in SSA and SLCP

A D N A 目 N A E N A E N A B N A C N

Introduction 0000000	Main algorithm 00000000	Parameterized algorithm	Conclusion O	References
Example				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 1: Sort up to $\ell = 7$ positions in the first round.

Step 1 LCP* gratuitous harbingers harborserv harborseal howevertha hungrycate integratio integratin integrated omniscient

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	00000000	○○●○	O	
Example				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Step 2: Identify suffixes with actual LCP longer than $\ell.$

Step 1	LCP*	Step 2
gratuitous	0	
harbingers	0	
harborserv	4	harborserv
harbors <mark>e</mark> al	. (harborseal
howevertha	1	
hungrycate	1	
integratio	0	integratio
integratin	7	integratin
integrated	7	integrated
omniscient	0	

Introduction 0000000	Main algorithm 00000000	Parameterized algorithm	Conclusion O	References
Example				

▲□▶▲□▶★≣▶★≣▶ = ● のへで

Step 3: Re-run the algorithm on just these suffixes.

Step 1 LCP*	Step 2	Step 3 LCP
gratuitous		
harbingers		0
harborserv 4	harborserv	harborseal
harborseal (harborseal	harborserv °
howevertha		
hungrycate		0
integratio	integratio	integrated
integratin (integratin	integratin \degree
integrated (integrated	integratio ⁹
omniscient ⁰		

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	00000000	○○●○	O	
Example				

Step 4: Insert re-sorted suffixes in the same positions.

Step 1	LCP*	Step 2	Step 3	LCP	Step 4	LCP
gratuitou	s				gratuitou	.s
harbinger	s			0	harbinger	່ຮ
harbors <mark>e</mark> r	v _	harborserv	harborsea	l	harborsea	1
harbors <mark>e</mark> a	1 (harborseal	harborser	v°	harborser	v
howeverth	a				howeverth	a
hungrycat	e			0	hungrycat	e
integra <mark>t</mark> i	o ⁰	integratio	integrate	d	integrate	d
integra <mark>t</mark> i	n (integratin	integrati	.n °	integrati	nő
integrate	d (integrated	integrati	.0	integrati	0
omniscien	t				omniscien	t

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	00000000	○○○●	O	
Complexity				

- Let b' be the number of incorrectly sorted suffixes
- First round: $\mathcal{O}(n)$ (shorter fingerprints)
- Second round: $O(n + (b'n/b) \log b)$ (fewer suffixes)
- Other steps: $\mathcal{O}(b)$

Theorem

If b' of the suffixes have an associated LCP longer than ℓ , SSA and SLCP can be computed in $O(n + (b'n/b) \log b)$ time using 8b + 4b' + o(b) machine words of space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- If $b' = \mathcal{O}(b/\log b)$, this runs in $\mathcal{O}(n)$ time
- In practice, b' is often extremely small

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	00000000	0000	●	
Conclusion				

• Sparse suffix sorting in $\mathcal{O}(n + (bn/s)\log s)$ time and 8b + o(b) space

• Made faster and smaller in practice by using lists

• $\mathcal{O}(n + (b'n/b) \log b)$ time, 8b + 4b' + o(b) space on short LCPs

• $\mathcal{O}(n)$ time if $b' = \mathcal{O}(b/\log b)$

• We proved that, on random strings, the SSA and SLCP can be computed in linear time because the LCPs are short w.h.p.

Introduction	Main algorithm	Parameterized algorithm	Conclusion	References
0000000	00000000	0000	O	
References				

Bille, Philip et al. (2016). "Sparse Text Indexing in Small Space". In: ACM Trans. Algorithms
Birenzwige, Or, Shay Golan, and Ely Porat (2020). "Locally Consistent Parsing for Text Indexing in Small Space". In: SODA 2020.
Fischer, Johannes, Tomohiro I, and Dominik Köppl (2020). "Deterministic Sparse Suffix Sorting in the Restore Model". In: <i>ACM Trans. Algorithms</i> .
Gawrychowski, Pawel and Tomasz Kociumaka (2017). "Sparse Suffix Tree Construction in Optimal Time and Space". In: <i>SODA 2017</i> .
I, Tomohiro, Juha Kärkkäinen, and Dominik Kempa (2014). "Faster Sparse Suffix Sorting". In: <i>STACS 2014</i> .
Kärkkäinen, Juha, Peter Sanders, and Stefan Burkhardt (2006). "Linear work suffix array construction". In: J. ACM.
Prezza, Nicola (2021). "Optimal Substring Equality Queries with Applications to Sparse Text Indexing". In: ACM Trans. Algorithms.

シック 単 (中本) (中本) (日)