
Introduction Main algorithm Parameterized algorithm Conclusion References

Sparse Suffix and LCP Array:
Simple, Direct, Small, and Fast

Lorraine A. K. Ayad1, Grigorios Loukides2,
Solon P. Pissis3,4, Hilde Verbeek3

1Brunel University London, UK
2King’s College London, UK

3CWI, Amsterdam, Netherlands
4Vrije Universiteit, Amsterdam, Netherlands

LATIN 2024
Puerto Varas, 20 March 2024



Introduction Main algorithm Parameterized algorithm Conclusion References

Suffix trees

Indexing large amounts of text or DNA requires small data
structures and fast algorithms

Suffix tree: compacted trie of all suffixes of a string

Example (Suffix tree of “banana”)



Introduction Main algorithm Parameterized algorithm Conclusion References

Suffix trees

Example (Finding all occurrences of “na” in “banana”)



Introduction Main algorithm Parameterized algorithm Conclusion References

Suffix array and LCP array

Suffix array: all suffixes of the string sorted lexicographically

LCP array: longest common prefix of two consecutive suffixes

Correspondence with suffix tree

Takes less space in practice

Example (Suffix tree, suffix array and LCP array of “banana”)

i suffix SA[i ] LCP[i ]

1 a 6 0
2 ana 4 1
3 anana 2 3
4 banana 1 0
5 na 5 0
6 nana 3 2



Introduction Main algorithm Parameterized algorithm Conclusion References

Sparse suffix and LCP array

Let B be a set of positions in some input string T

e.g. string anchors or naturally interesting positions in text

Sparse suffix array: suffixes starting at positions in B, sorted

Sparse LCP array: longest common prefixes of SSA

Example (Sparse suffix and LCP array of “abracadabra”)

Let T = abracadabra and B = {1, 5, 6, 8}. The relevant suffixes
are abracadabra, cadabra, adabra, abra. Sorting these gives:

i suffix SSA[i ] SLCP[i ]

1 abra 8 0
2 abracadabra 1 4
3 adabra 6 1
4 cadabra 5 0



Introduction Main algorithm Parameterized algorithm Conclusion References

Sparse Suffix Sorting

Sparse Suffix Sorting

Given: string T ∈ Σn, set B of b indices in [1, n]
Asked: the arrays SSA and SLCP

Building the full suffix and LCP array takes too much space

Can we design an algorithm

running in (near-)linear time,
using O(b) space,
that constructs SSA and SLCP more or less directly,
and is simple to understand and implement?



Introduction Main algorithm Parameterized algorithm Conclusion References

Sparse Suffix Sorting

Time Space Notes
Kärkkäinen, Sanders, and Burkhardt 2006

O(n2/s) O(s) for s ∈ [b, n]
Bille et al. 2016

O(n log2 b) O(b) Monte Carlo
O(n log2 n + b2 log b) O(b) Las Vegas

I, Kärkkäinen, and Kempa 2014
O(n + (bn/s) log s) O(b) Monte Carlo

O(n log b) O(b) Las Vegas
Gawrychowski and Kociumaka 2017

O(n) O(b) Monte Carlo
O(n

√
log b) O(b) Las Vegas
Birenzwige, Golan, and Porat 2020

O(n) O(b) Las Vegas
O(n log n

b
) O(b) b = Ω(log n)

Fischer, I, and Köppl 2020
O(c

√
log n + b log b log n log∗ n) O(b) “Restore” model

Prezza 2021
O(n + b log2 n) O(1) Restore model, Monte Carlo

Table: Existing algorithms for Sparse Suffix Sorting



Introduction Main algorithm Parameterized algorithm Conclusion References

Sparse Suffix Sorting

Our contributions:

an O(n log b) time algorithm that uses 8b + o(b) machine
words of space

an improved version, that runs in O(n) time if the number of
suffixes with long LCPs is sufficiently small

proof that SSA and SLCP of a random string can be
computed in linear time



Introduction Main algorithm Parameterized algorithm Conclusion References

Overview

Based on work by I et al.1

constructs the sparse suffix tree, from which one could extract
SSA and SLCP

Our contribution: implement using an array-based approach
rather than a tree, which saves time and space in practice

Example (Sparse suffix tree, sparse suffix array and LCP array)

i suffix SSA[i ] SLCP[i ]

1 abra 8 0
2 abracadabra 1 4
3 adabra 6 1
4 cadabra 5 0

1I, Kärkkäinen, and Kempa 2014



Introduction Main algorithm Parameterized algorithm Conclusion References

Overview

1 Iteratively create the hierarchy of LCP groups

2 Sort the entries of each LCP group

3 Build SSA and SLCP based on the LCP groups

Definition (LCP group)

An LCP group is a triple (id , {b1, . . . , bk}, lcp) where
id is its unique identifier

b1, . . . , bk are each either an entry from B (indicating a
suffix) or the id of another LCP group

all suffixes in the group have a common prefix of at least lcp
characters



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10) (8) (9)

7, {1, 2, 3, 4, 5, 6}, 0

Start with one group having an LCP value of 0. We will refine the
groups for decreasing powers of 2, starting at 16.
If some suffixes have a common prefix, they will be put together
into a new group.

We check for matches using Karp-Rabin fingerprints and a hash
table.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10) (8) (9)

7, {1, 2, 3, 4, 5, 6}, 0

Prefixes of length 16:

1: caterpillarcapil
2: aterpillarcapill
3: pillarcapillary$
4: arcapillary$
5: pillary$
6: ary$

(no match)



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10) (8) (9)

7, {1, 2, 3, 4, 5, 6}, 0

Prefixes of length 8:

1: caterpil
2: aterpill
3: pillarca
4: arcapill
5: pillary$
6: ary$

(still no match)



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10) (8) (9)

7, {1, 2, 3, 4, 5, 6}, 0

Prefixes of length 4:

1: cate
2: ater
3: pill
4: arca
5: pill
6: ary$

Suffixes 3 and 5 have a common prefix of length 4.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10)

(8)

(9)

7, {1, 2, 4, 6, 8}, 0 8, {3, 5}, 4

Prefixes of length 4:

1: cate
2: ater
3: pill
4: arca
5: pill
6: ary$

Create a new group for suffixes 3 and 5.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10)

(8)

(9)

7, {1, 2, 4, 6, 8}, 0 8, {3, 5}, 4

Extend prefixes by 2:

1: ca
2: at
4: ar
6: ar
8: pi (*)

3: (pill)ar
5: (pill)ar

Suffixes 4 and 6 in group 7 have a common prefix of length 2, and
suffixes 3 and 5 in group 8 have a common prefix of length 4 + 2.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10)

(8) (9)

7, {1, 2, 8, 9}, 0 8, {3, 5}, 4 9, {4, 6}, 2

Extend prefixes by 2:

1: ca
2: at
4: ar
6: ar
8: pi (*)

3: (pill)ar
5: (pill)ar

Create a new group for suffixes 4 and 6.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10)

(8) (9)

7, {1, 2, 8, 9}, 0 8, {3, 5}, 6 9, {4, 6}, 2

Extend prefixes by 2:

1: ca
2: at
4: ar
6: ar
8: pi (*)

3: (pill)ar
5: (pill)ar

Update the LCP value for group 8.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6

(10)

(8) (9)

7, {1, 2, 8, 9}, 0 8, {3, 5}, 6 9, {4, 6}, 2

Extend prefixes by 1:

1: c
2: a
8: p (*)
9: a (*)

3: (pillar)c
5: (pillar)y

4: (ar)c
6: (ar)y

Suffix 2 and group 9 in group 7 have a common prefix of length 1.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6
(10) (8) (9)

7, {1, 8, 10}, 0 8, {3, 5}, 6 9, {4, 6}, 2 10, {2, 9}, 1

Extend prefixes by 1:

1: c
2: a
8: p (*)
9: a (*)

3: (pillar)c
5: (pillar)y

4: (ar)c
6: (ar)y

Create a new group for 2 and 9.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 1: building LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6
(10) (8) (9)

7, {1, 8, 10}, 0 8, {3, 5}, 6 9, {4, 6}, 2 10, {2, 9}, 1

Now all the LCP values are correct, and step 1 is finished.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 2: sorting the LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6
(10) (8) (9)

7, {1, 8, 10}, 0 8, {3, 5}, 6 9, {4, 6}, 2 10, {2, 9}, 1

1: c

8: p

10: a

3: (pillar)c
5: (pillar)y

4: (ar)c
6: (ar)y

2: (a)t
9: (a)r

We already have all the LCP values, so we can compare suffixes by
just looking at the character after the LCP.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 2: sorting the LCP groups

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6
(10) (8) (9)

7, {10, 1, 8}, 0 8, {3, 5}, 6 9, {4, 6}, 2 10, {9, 2}, 1

1: c

8: p

10: a

3: (pillar)c
5: (pillar)y

4: (ar)c
6: (ar)y

2: (a)t
9: (a)r

Sort each LCP group using e.g. in-place MergeSort.



Introduction Main algorithm Parameterized algorithm Conclusion References

Step 3: building the SSA and SLCP

T = c a t e r p i l l a r c a p i l l a r y $ (n = 20)
1 2 3 4 5 6
(10) (8) (9)

7, {10, 1, 8}, 0 8, {3, 5}, 6 9, {4, 6}, 2 10, {9, 2}, 1

Build SSA and SLCP using a depth-first search on the LCP group
hierarchy. The LCP value of two suffixes is that of their “lowest
common ancestor” group.

i suffix SSA[i ] SLCP[i ]

1 arcapillary 4 0
2 ary 6 2
3 aterpillarcapillary 2 1
4 caterpillarcapillary 1 0
5 pillarcapillary 3 0
6 pillary 5 6



Introduction Main algorithm Parameterized algorithm Conclusion References

Karp-Rabin fingerprints

Lemma (I, Kärkkäinen, and Kempa 2014)

Given a string T of length n and an integer s, we can create a
data structure of size O(s) in O(n) time that allows us to find the
KR-fingerprint of any length-k substring of T , in O(min{k, n/s})
time.

This is done by storing the fingerprints of length-n/s blocks of T
as a prefix-sum array and applying modular arithmetic on those
values to obtain the fingerprints of longer substrings.



Introduction Main algorithm Parameterized algorithm Conclusion References

Complexity

Pre-processing: O(n) time

Step 1: O((bn/s) log s) time

O(log n) rounds, O(b) fingerprints each round
First log s rounds: long fingerprints, O((bn/s) log s)
Last log n − log s: short fingerprints, amortized O(bn/s)

Step 2: O(n) time

Sorting O(b) items over at most b groups
low b: merge sort; high b: radix sort
Either case, O(n) time

Step 3: O(b) time

DFS over the O(b) groups and suffixes



Introduction Main algorithm Parameterized algorithm Conclusion References

Complexity

Theorem

Given T ∈ Σn, set B of b indices in [1, n] and an integer s ∈ [b, n],
SSA and SLCP can be computed in O(n+ (bn/s) log s) time using
s + 7b + o(b) machine words of space.

If s = b, then O(n log b) time and 8b + o(b) space

Implementing the LCP groups sequentially instead of as a tree
improves running time in practice

Karp-Rabin fingerprints are randomized; the output is correct
with high probability



Introduction Main algorithm Parameterized algorithm Conclusion References

Parameterized algorithm

Most suffixes will likely have short LCPs

Save time by starting at lower powers of 2

Substrings shorter than n/s can be fingerprinted faster
Some LCP values may be underestimated

We can easily identify the “incorrect” LCP values by looking
at the next character

All other suffixes are already at the right position in SSA



Introduction Main algorithm Parameterized algorithm Conclusion References

Parameterized algorithm

1 Run the algorithm, starting at 2⌊log
n
b
⌋ (and s = b)

Longest LCP that can be found is ℓ = 2⌊log
n
b ⌋+1 − 1

2 Identify suffixes that have LCP value ℓ and have the ℓ+ 1-th
character in common with their neighbor in SSA

3 Run the algorithm again with all powers of 2, only on the
identified suffixes

4 Insert results of the second run in the same positions in SSA
and SLCP



Introduction Main algorithm Parameterized algorithm Conclusion References

Example

Step 1: Sort up to ℓ = 7 positions in the first round.

Step 1
gratuitous

harbingers

harborserv

harborseal

howevertha

hungrycate

integratio

integratin

integrated

omniscient

LCP*
0

0

4

7

1

1

0

7

7

0

Step 2

harborserv

harborseal

integratio

integratin

integrated

Step 3

harborseal

harborserv

integrated

integratin

integratio

LCP

0

8

0

8

9

Step 4
gratuitous

harbingers

harborseal

harborserv

howevertha

hungrycate

integrated

integratin

integratio

omniscient

LCP
0

0

4

8

1

1

0

8

9

0



Introduction Main algorithm Parameterized algorithm Conclusion References

Example

Step 2: Identify suffixes with actual LCP longer than ℓ.

Step 1
gratuitous

harbingers

harborserv

harborseal

howevertha

hungrycate

integratio

integratin

integrated

omniscient

LCP*
0

0

4

7

1

1

0

7

7

0

Step 2

harborserv

harborseal

integratio

integratin

integrated

Step 3

harborseal

harborserv

integrated

integratin

integratio

LCP

0

8

0

8

9

Step 4
gratuitous

harbingers

harborseal

harborserv

howevertha

hungrycate

integrated

integratin

integratio

omniscient

LCP
0

0

4

8

1

1

0

8

9

0



Introduction Main algorithm Parameterized algorithm Conclusion References

Example

Step 3: Re-run the algorithm on just these suffixes.

Step 1
gratuitous

harbingers

harborserv

harborseal

howevertha

hungrycate

integratio

integratin

integrated

omniscient

LCP*
0

0

4

7

1

1

0

7

7

0

Step 2

harborserv

harborseal

integratio

integratin

integrated

Step 3

harborseal

harborserv

integrated

integratin

integratio

LCP

0

8

0

8

9

Step 4
gratuitous

harbingers

harborseal

harborserv

howevertha

hungrycate

integrated

integratin

integratio

omniscient

LCP
0

0

4

8

1

1

0

8

9

0



Introduction Main algorithm Parameterized algorithm Conclusion References

Example

Step 4: Insert re-sorted suffixes in the same positions.

Step 1
gratuitous

harbingers

harborserv

harborseal

howevertha

hungrycate

integratio

integratin

integrated

omniscient

LCP*
0

0

4

7

1

1

0

7

7

0

Step 2

harborserv

harborseal

integratio

integratin

integrated

Step 3

harborseal

harborserv

integrated

integratin

integratio

LCP

0

8

0

8

9

Step 4
gratuitous

harbingers

harborseal

harborserv

howevertha

hungrycate

integrated

integratin

integratio

omniscient

LCP
0

0

4

8

1

1

0

8

9

0



Introduction Main algorithm Parameterized algorithm Conclusion References

Complexity

Let b′ be the number of incorrectly sorted suffixes

First round: O(n) (shorter fingerprints)

Second round: O(n + (b′n/b) log b) (fewer suffixes)

Other steps: O(b)

Theorem

If b′ of the suffixes have an associated LCP longer than ℓ, SSA and
SLCP can be computed in O(n + (b′n/b) log b) time using
8b + 4b′ + o(b) machine words of space.

If b′ = O(b/ log b), this runs in O(n) time

In practice, b′ is often extremely small



Introduction Main algorithm Parameterized algorithm Conclusion References

Conclusion

Sparse suffix sorting in O(n + (bn/s) log s) time and
8b + o(b) space

Made faster and smaller in practice by using lists

O(n + (b′n/b) log b) time, 8b + 4b′ + o(b) space on short
LCPs

O(n) time if b′ = O(b/ log b)

We proved that, on random strings, the SSA and SLCP can
be computed in linear time because the LCPs are short w.h.p.



Introduction Main algorithm Parameterized algorithm Conclusion References

References

Bille, Philip et al. (2016). “Sparse Text Indexing in Small Space”. In: ACM
Trans. Algorithms.

Birenzwige, Or, Shay Golan, and Ely Porat (2020). “Locally Consistent
Parsing for Text Indexing in Small Space”. In: SODA 2020.

Fischer, Johannes, Tomohiro I, and Dominik Köppl (2020). “Deterministic
Sparse Suffix Sorting in the Restore Model”. In: ACM Trans. Algorithms.

Gawrychowski, Pawel and Tomasz Kociumaka (2017). “Sparse Suffix Tree
Construction in Optimal Time and Space”. In: SODA 2017.

I, Tomohiro, Juha Kärkkäinen, and Dominik Kempa (2014). “Faster Sparse
Suffix Sorting”. In: STACS 2014.

Kärkkäinen, Juha, Peter Sanders, and Stefan Burkhardt (2006). “Linear
work suffix array construction”. In: J. ACM.

Prezza, Nicola (2021). “Optimal Substring Equality Queries with
Applications to Sparse Text Indexing”. In: ACM Trans. Algorithms.


	Introduction
	Suffix trees
	Suffix array and LCP array
	Sparse suffix and LCP array
	Sparse Suffix Sorting

	Main algorithm
	Overview
	Example
	Karp-Rabin fingerprints
	Complexity

	Parameterized algorithm
	Parameterized algorithm
	Example
	Complexity

	Conclusion
	Conclusion
	References

	References

