
Disjoint Paths and Directed Steiner Tree on Planar
Graphs with Terminals on Few Faces

Master’s Thesis in Computing Science
Hilde Verbeek 27 July 2022



Introduction

• Directed Steiner Tree

• Disjoint Paths

• Terminals on few faces
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Fixed-parameter tractability and face cover number
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Fixed-parameter tractability and face cover number
Parameterized algorithms

• NP-hard problems: exponential running time

• Finding exact solutions is impractical

• Solution: parameterized algorithms
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Fixed-parameter tractability and face cover number
Parameterized algorithms

• Parameterized algorithm: runs in polynomial time if an input
parameter k is fixed

• Allows one to design efficient algorithms if the parameter is
bounded by a constant

• FPT: f(k) · poly(n) time
(fixed-parameter tractable)

• XP: nf(k) time
(slicewise polynomial)
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Fixed-parameter tractability and face cover number
Parameterized algorithms

Examples:

• Vertex Cover: O(2k · n) time
for a vertex cover of ≤ k vertices

• Steiner Tree: O(2k · k2 · n2) time
on inputs with k terminals

• Dominating Set: 3w ·wO(1) · n time
on graphs of treewidth ≤ w
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Fixed-parameter tractability and face cover number
Face cover number of terminals

For a planar graph G and terminals K ⊆ V(G), the face cover number
γ(G, K) is the number of faces needed to cover all vertices in K.
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Fixed-parameter tractability and face cover number
Face cover number of terminals

• Computing a face cover of ≤ k faces: ck · n time (FPT)1

(for some constant c)

• γ(G, K) ≤ |K|

• Useful in some applications

1Daniel Bienstock and Clyde L Monma. “On the complexity of covering vertices by faces in
a planar graph”. In: SIAM Journal on Computing 17.1 (1988), pp. 53–76.
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Directed Steiner Tree
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Directed Steiner Tree
Introduction

Steiner Tree: given weighted graph G and terminals K ⊆ V(G),
return minimum-weight tree connecting all terminals in K.
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Directed Steiner Tree
Introduction

Directed Steiner Tree: graph is directed and contains root r;
output tree should be rooted in r as well.
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Directed Steiner Tree
Introduction

This section: two Steiner Tree algorithms, with parameterization
by the face cover number on planar graphs.

Authors General Few faces
Dreyfus and Wagner O(2k · k2 · n2)2 nO(k)3

Kisfaludi-Bak et al. - 2O(k) · nO(
p
k)4

Both algorithms on undirected graphs originally, adapted by me.

2Stuart E Dreyfus and Robert A Wagner. “The Steiner problem in graphs”. In: Networks 1.3
(1971), pp. 195–207.

3Marshall Bern. “Faster exact algorithms for Steiner trees in planar networks”. In: Networks
20.1 (1990), pp. 109–120.

4Sándor Kisfaludi-Bak, Jesper Nederlof, and Erik Jan van Leeuwen. “Nearly ETH-tight
algorithms for planar Steiner tree with terminals on few faces”. In: ACM Transactions on
Algorithms (TALG) 16.3 (2020), pp. 1–30.
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Directed Steiner Tree
Based on Dreyfus-Wagner

Observe in the structure of a Steiner Tree on terminals K and root s:

• s: root

• v: first branching vertex

• P: shortest s− v path

• T1: min Steiner tree with terminals
K1 and root v

• T2: min Steiner tree with terminals
K2 and root v

(barring edge cases v = r and v ∈ K)
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Directed Steiner Tree
Based on Dreyfus-Wagner

Basic idea: compute Steiner trees for all subsets of terminals and all
root vertices using dynamic programming.

For every D ⊆ K and s ∈ V(G):
A[D, s] = weight of minimum Steiner tree on terminals D and root s.

Then the final answer is simply A[K, r].
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Directed Steiner Tree
Based on Dreyfus-Wagner

Recall the Steiner tree structure.
To compute A[D, s]:

• w(P) = dist(s, v)

• w(T1) = A[K1, v]

• w(T2) = A[K2, v]

By minimizing on D′ and v:

A[D, s] = min
v∈V(G)
;⊂D′⊂D

{dist(s, v) + A[D′, v] + A[D \ D′, v]}
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Directed Steiner Tree
Based on Dreyfus-Wagner

A[D, s] = min
v∈V(G)
;⊂D′⊂D

{dist(s, v) + A[D′, v] + A[D \ D′, v]}

• Base case: A[{v}, s] = dist(s, v)

• Compute for subsets of K of increasing sizes

• Final answer is A[K, r]

• Running time: O(n3k + n22k + n2 log n+ nm) (= O(3k · n3))

• Improved: O(2k · k2 · n2)
(using fast subset convolution and batching)
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Directed Steiner Tree
Dreyfus-Wagner on few faces

Intuition: do not combine subtrees when they intersect, if their
terminals are on the same face.
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Directed Steiner Tree
Dreyfus-Wagner on few faces

• When terminals are on the same face, only consider intervals of
those terminals.

• For p terminals: 2p subsets, but only O(p2) subintervals.

• When selecting subsets D ⊆ K or D′ ⊆ D, ensure terminals of
each face are on an interval.

• nO(k) time when k is the number of terminal faces.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Second algorithm: separating the graph by guessing some vertices,
maintaining a balance between the terminal faces.

This section: summary of the algorithm, and how to adapted to
directed graphs.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Consider a simple branching algorithm for terminals K:

1. Enumerate possibilities of v ∈ V(G) and K′ ⊂ K

2. Recurse on inputs K′ ∪ {v} and (K \ K′) ∪ {v} and return
option with minimum total weight

Can something like this be applied to terminal faces?
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Problem: some faces end up in both subproblems.
Solution: separate in multiple vertices.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Separating in multiple vertices yields forests.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

• Block: vertices B, encoding a component containing vertices B
and maybe some terminals

• Block Steiner forest: for terminals K ⊆ V(G) and blocks
π = {B1, ...,Bp}, a forest of which components are encoded by
π and every terminal in K is connected to one component

• BSF with one block equals a Steiner tree
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Example:
π = {{a, b, c,},{d, e},{f}} and terminals K

23/50



Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Algorithm:

• with few blocks and few terminal faces, divide terminals over
blocks and use Dreyfus-Wagner

• otherwise: choose a separator, split the blocks and faces,
recurse and take the optimal solution
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Demonstration:
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Directed Steiner Tree
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Demonstration:
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Directed Steiner Tree
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Demonstration:
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Demonstration:
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

How large should the separator be?

Claim: only O(
p
k) vertices are needed to create a balanced

separation between the terminal faces, if k is the number of terminal
faces.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Observe the graph H which is the union of a solution block Steiner
forest and the terminal faces:
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

• Every face of H is either a terminal face or adjacent to one

• In other words, the dual graph H∗ has a dominating set of size k

• DS of size k =⇒ tw(H∗) ≤ 15
p
k

• tw(H∗) ≤ 15
p
k+ 1 =⇒ tw(H) ≤ 15

p
k+ 1

• tw(H) ≤ 15
p
k+ 1 =⇒ H contains a balanced separation of

size ≤ 15
p
k+ 2
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Messy detail: some terminal faces are intersected by the separator.
This is only the case for O(

p
k) faces, though.
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Base case: when the blocks have b vertices and k+ b ≤ c0 (constant),
for every terminal face F:

• enumerate all nO(b) assignments of F’s terminals to the b blocks

• for every assignment and every block, solve using
Dreyfus-Wagner for the block and its assigned terminals

• take the result of minimum weight

Because there are nO(bk) assignments and Dreyfus-Wagner takes
nO(k+b) time, and both parameters are bounded by a constant, this
runs in polynomial time!
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Algorithm:
Input: graph G, k terminal faces K, blocks π with b vertices

• if k+ b ≤ c0, use base case algorithm

• enumerate all separators X of size ≤ 15
p
k+ 2

• enumerate all separations of the terminal faces into K1 and K2
• add vertices from X to the blocks, and enumerate sets of blocks

π1 and π2 that can be combined to form π

• recurse on inputs (G, K1, π1) and (G, K2, π2)

• return the minimum result
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Analysis: 2O(k) · nO(
p
k) time.

• 2O(k) comes from separating the terminal faces

• nO(
p
k) comes from picking a separator
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

On directed graphs:

• how is the right connectivity maintained in block Steiner
forests?

• how is the root vertex incorporated?

• can the proof for the separator size be adapted?

• how is the running time affected?
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Connectivity in forests:

• maintain a root vertex for all blocks

• ensure proper connectivity when picking subproblem inputs;
arithmetic on blocks

• topmost function call takes one block with the proper root
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Directed Steiner Tree
Based on Kisfaludi-Bak et al.

Picking the separator:

• no significant change, as arc directions can be ignored in this
part

Running time: no change; adding roots does not affect asymptotic
bound
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Disjoint Paths
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Disjoint Paths
Introduction

Disjoint Paths: given graph G and terminals
{{s1, t1}, ...,{sk, tk}}, find k disjoint paths connecting each si to ti.
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Disjoint Paths
Introduction

• VLSI chip design: connect terminals with wires on a chip

• Theoretical interest: Robertson and Seymour’s graph minors
project; ingredient for FPT Minor Testing algorithm

• Very hard to solve
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Disjoint Paths
Irrelevant vertices technique

Robertson and Seymour: FPT algorithm using irrelevant vertices.

Vertex v is irrelevant:
(G, P) is has a solution ⇐⇒ (G− v, P) has a solution
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Disjoint Paths
Irrelevant vertices technique

Irrelevant vertices technique:

• If tw(G) > g(k), then there must be an irrelevant vertex

• Remove irrelevant vertices until treewidth reaches g(k)

• Solve using tree decomposition algorithm

Robertson and Seymour: Disjoint Paths can be solved in
f(k) · O(n3) time5. This is FPT, but...

5Neil Robertson and Paul D. Seymour. “Graph Minors .XIII. The Disjoint Paths Problem”. In:
Journal of Combinatorial Theory, Series B 63.1 (1995), pp. 65–110.
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Disjoint Paths
Galactic algorithms

• Robertson and Seymour: Disjoint Paths can be solved in
f(k) · O(n3) time

• Kawarabayashi and Wollan: f(k) = 222
2Ω(k) 6

• Galactic algorithm: FPT, but in no way practical

6Ken-ichi Kawarabayashi and Paul Wollan. “A Shorter Proof of the Graph Minor Algorithm:
The Unique Linkage Theorem”. In: Proceedings of the Forty-Second ACM Symposium on Theory
of Computing. STOC ’10. New York, NY, USA, 2010, pp. 687–694.
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Disjoint Paths
Galactic algorithms

“For any instance G = (V, E) that one could into the known universe,
one would easily prefer |V|70 to even constant time, if that constant
had to be one of Robertson and Seymour’s.”

- David Johnson7

7David S Johnson. “The NP-completeness column: An ongoing guide”. In: Journal of
algorithms 8.2 (1987), pp. 285–303.
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Disjoint Paths
Planar Disjoint Paths

Better results on planar graphs:

• Schrijver: nO(k) time using algebraic approach8

• Adler et al.: 22O(k) · n time using irrelevant vertices9

• Lokshtanov et al.: 2O(k2) · nO(1) time combining the two10

8Alexander Schrijver. “Finding k disjoint paths in a directed planar graph”. In: SIAM Journal
on Computing 23.4 (1994), pp. 780–788.

9Isolde Adler et al. “Irrelevant vertices for the planar disjoint paths problem”. In: Journal of
Combinatorial Theory, Series B 122 (2017), pp. 815–843.

10Daniel Lokshtanov et al. “An exponential time parameterized algorithm for planar disjoint
paths”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
2020, pp. 1307–1316.
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Disjoint Paths
Planar Disjoint Paths on few faces

What if all terminals lie on few faces?

Face cover number Running time Authors
1 O(n) Robertson and Seymour11

2 O(n) Ripphausen-Lipa et al.12

any k nf(k) Schrijver13

11Neil Robertson and Paul D. Seymour. “Graph minors. VI. Disjoint paths across a disc”. In:
Journal of Combinatorial Theory, Series B 41.1 (1986), pp. 115–138.

12Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. “Linear-time algorithms for
disjoint two-face paths problems in planar graphs”. In: International Journal of Foundations of
Computer Science 7.02 (1996), pp. 95–110.

13Alexander Schrijver. “Disjoint homotopic paths and trees in a planar graph”. In: Discrete &
Computational Geometry 6.4 (1991), pp. 527–574.
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Disjoint Paths
Planar Disjoint Paths on one face

One face: greedy algorithm by ordering the terminals

• Must be pair of terminals with no others between them

• Path along face border is always “free"
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Disjoint Paths
Planar Disjoint Paths on two faces

Two faces: find two sets of paths trending in counterclockwise
direction, combine to make full paths
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Disjoint Paths
Planar Disjoint Paths on few faces

k faces:

• enumerate homotopy classes of connecting curves in the plane

• use linear programming to shift the curves and create disjoint
paths in the graph
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Concluding remarks
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Concluding remarks

In summary:

• Face cover number potentially powerful as parameter

• Both problems are FPT by number of terminals, allow XP
algorithm by face cover number

• Steiner Tree algorithms readily adapted to directed graphs
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Concluding remarks

Future research:

• FPT algorithm or lower bound for Planar Disjoint Paths
by face cover number

• Better Disjoint Paths algorithms in general?

• Planar Steiner Tree on one or two faces

• Complexity of Directed Steiner Tree

50/50


	Fixed-parameter tractability and face cover number
	Parameterized algorithms
	Face cover number of terminals

	Directed Steiner Tree
	Introduction
	Based on Dreyfus-Wagner
	Dreyfus-Wagner on few faces
	Based on Kisfaludi-Bak et al.

	Disjoint Paths
	Introduction
	Irrelevant vertices technique
	Galactic algorithms
	Planar Disjoint Paths
	Planar Disjoint Paths on few faces
	Planar Disjoint Paths on one face
	Planar Disjoint Paths on two faces
	Planar Disjoint Paths on few faces

	Concluding remarks
	


