Minimizing the Minimizers through Alphabet Reordering

<u>Hilde Verbeek</u>¹, Lorraine A. K. Ayad³, Grigorios Loukides⁴, Solon P. Pissis^{1,2}

¹CWI, Amsterdam, Netherlands ²Vrije Universiteit, Amsterdam, Netherlands ³Brunel University London, UK ⁴King's College London, UK

> CPM 2024 福岡市, 25 June 2024

String sampling

- Minimizers are a popular form of string sampling
- Important applications such as indexing and sequence alignment
- Minimizers satisfy some useful properties:
 - approximately uniform sampling
 - local consistency
 - left-to-right parsing

Minimizers

Definition (Minimizers)

Let $w \ge 2, k \ge 1$. The minimizer of a length-(w + k - 1) window is the smallest k-mer within it.

For a string S, $M_{wk}(S)$ is the set of the minimizers of all windows in S.

- Overlapping windows can have the same minimizer
- w is the number of minimizer candidates for each window; k
 is the length of the minimizers
- In case of a tie, we choose the left-most smallest candidate

Example

Let
$$w = k = 3$$
 and $S = AACAACGCTA$.

The ordering of the k-mers matters!

Minimizing the Minimizers

- The right ordering on k-mers can make a significant difference in the number of minimizers
- Practicioners use some heuristics to improve this, but no theoretical results yet
- We focus specifically on lexicographic orders

Minimizing the Minimizers

Definition (Minimizing the Minimizers)

Given string $S \in \Sigma^n$ and $w \ge 2, k \ge 1$, find the ordering on Σ that minimizes $M_{wk}(S)$.

Theorem

Minimizing the Minimizers is NP-complete for all $w \ge 3, k \ge 1$.

Feedback Arc Set

Definition (Feedback Arc Set)

Given a directed graph G = (V, A) and integer ℓ , find a set $F \subseteq A$ with $|F| \le \ell$ such that $(V, A \setminus F)$ is acyclic.

Figure: A directed graph with a feedback arc set of size 2.

Theorem (Karp 1972)

Feedback Arc Set is NP-complete.

Feedback Arc Set

- A feedback arc set F can be induced by an ordering on G's vertices, such that $F = \{(u, v) \in A \mid v < u\}$.
 - This is a topological ordering of $(V, A \setminus F)$.

Figure: The feedback arc set consists of arcs (u, v) with v < u.

Summary

Given a FAS instance G = (V, A), we create a string S on alphabet V.

- Alphabet orders with few minimizers on S will induce a small FAS on G.
- Create a gadget for every arc (u, v) with
 - few minimizers when u < v;
 - many minimizers when v < u, as "penalty" for being in the FAS.
- We use these gadgets to count the minimizers in terms of the FAS.

Construction of S

Let T_{ab} be some string consisting of letters a and b, and $q \in \mathbb{N}$ (to be determined at the end). We construct S as

$$S = \prod_{(a,b)\in A} T_{ab}^{q+4}.$$

We compute the number of minimizers exactly for the middle q blocks of every T_{ab}^{q+4} ; the rest is the discrepancy λ .

Figure: Structure of S. We count the minimizers for windows within the highlighted blocks, whereas the minimizers in grey blocks count as discrepancy.

- Only count the middle q blocks, so the (w + k 1)-windows do not overlap some other $T_{\rm cd}$.
- Let M_{a<b} and M_{b<a} be the number of minimizers in T_{ab} if a < b and b < a respectively.
- Let $M_{wk}(S, F)$ denote the number of minimizers in S under the alphabet ordering inducing feedback arc set F.

We count the number of minimizers as

$$M_{wk}(S,F) = q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda$$
$$= q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda.$$

We count the number of minimizers as

$$\begin{aligned} M_{wk}(S,F) &= q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda \\ &= q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda. \end{aligned}$$

 $M_{wk}(S, F)$: number of minimizers in S for feedback arc set F

We count the number of minimizers as

$$M_{wk}(S,F) = \frac{q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda}{= q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda}.$$

 $q \cdot M_{b < a}$ minimizers for the |F| arcs in the FAS

We count the number of minimizers as

$$M_{wk}(S,F) = q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda$$

= $q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda$.

 $q \cdot M_{a < b}$ minimizers for the |A| - |F| arcs not in the FAS

We count the number of minimizers as

$$M_{wk}(S,F) = q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda$$
$$= q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda.$$

 λ : minimizers we don't count explicitly

We count the number of minimizers as

$$M_{wk}(S,F) = q \cdot M_{b < a} \cdot |F| + q \cdot M_{a < b} \cdot (|A| - |F|) + \lambda$$
$$= q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda.$$

Lemma

If $M_{b < a} > M_{a < b}$ and $\lambda < q \cdot (M_{b < a} - M_{a < b})$, then $M_{wk}(S, F)$ is minimal if and only if |F| is minimal.

Construction of T_{ab}

We distinguish three cases:

- Case A $(w \ge k + 2)$:
 - $T_{ab} = ab^{w-1}$.
- Case B ($w = 3, k \ge 2$) and Case C (3 < w < k + 2):
 - $T_{ab} = (ab)^t bb$ with $t = \left\lceil \frac{w+k}{2} \right\rceil$.
 - \bullet T_{ab} is the same, but the proof is different.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

We will determine the minimizer for every window starting in some T_{ab} , for both a < b and b < a.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

Find the minimum k-mer in the window.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb$.

Find the minimum k-mer in the window.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

The minimizer is in the next T_{ab} , so we ignore it.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

The minimizer is in the next T_{ab} , so we ignore it.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

The minimizer is in the next T_{ab} , so we ignore it.

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

Thus we have one minimizer if a < b.

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

Minimizer is in the next T_{ab} so we ignore it.

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

Minimizer is in the next T_{ab} so we ignore it.

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

Minimizer is in the next T_{ab} so we ignore it.

$$M_{a < b} = 1$$

Let w = 7 and k = 4.

We have $T_{ab} = ab^{w-1} = abbbbbb.$

We have three minimizers if b < a.

$$M_{a < b} = 1$$
$$M_{b < a} = 3$$

In general:

- every window contains ab^{k-1} , which is the minimizer if a < b, so $M_{a < b} = 1$;
- every T_{ab} contains w k occurrences of b^k , so $M_{b < a} = w k$.

Given that $w - k \ge 2$, we have $M_{b < a} > M_{a < b}$.

Case B: $w = 3, k \ge 2$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

We count minimizers in the same way as before.

Case B: $w = 3, k \ge 2$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

We count minimizers in the same way as before.

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a & b & a & b & \underline{b} & \underline{b} & \underline{b} & \underline{a}' \\ b & a & b & b & b \end{vmatrix}$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb$.

Minimizer is in the next T_{ab} , so we don't count it.

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

Minimizer is in the next T_{ab} , so we don't count it.

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

We have four minimizers if a < b.

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ a & b & a & b & a \\ a & b & a & b & b \end{vmatrix}$$
 a b a b a b b b

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{b} \\ \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{b} \end{vmatrix}$$
 b b a b a b a b b b

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b \\ \uparrow & \uparrow & \uparrow & b \end{vmatrix}$$
 a b a b a b b b

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & b \\ \uparrow & \uparrow & \uparrow & \uparrow & b & b \end{vmatrix}$$
 a b a b a b b b

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

a b a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a & b & b & b \\ \uparrow & \uparrow & \uparrow & \uparrow & b & b & a & b & b & b \end{vmatrix}$$

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

$$M_{a < b} = 4$$

Let w = 3 and k = 3.

We have
$$t = \left\lceil \frac{3+3}{2} \right\rceil = 3$$
 so $T_{ab} = (ab)^t bb = abababbb.$

We have five minimizers if b < a.

$$M_{a < b} = 4$$
$$M_{b < a} = 5$$

In general:

- for a < b, we count every k-mer starting with a, plus the very last k-mer, and $M_{a < b} = \left| \frac{k}{2} \right| + 3$;
- for b < a, we count every k-mer starting with b, and $M_{b < a} = \left| \frac{k}{2} \right| + 4$.

Therefore $M_{b < a} - M_{a < b} = 1$.

Let w = 4 and k = 3.

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{\mathrm{ab}} = (\mathrm{ab})^t \mathrm{bb} = \mathrm{ababababbb}.$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow \\ \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{b} & \mathbf{a} \\ \end{vmatrix}$$
 b b b a b a b a b ...

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow \\ a & b & \underline{a} & \underline{b} & \underline{a} & \underline{b} & \underline{a} & \underline{b} \end{vmatrix}$$
 b b a b a b a b ...

$$\dots a b a b b b \begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a b a [\underline{b} \underline{a} \underline{b} \underline{a} \underline{b} \underline{b}] b \end{vmatrix} a b a b a b \dots$$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & b & b \end{vmatrix}$$
 a b a b a b ...

$$\dots a b a b b b \begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a b a b a b a \end{vmatrix} b \underbrace{a b b b}_{a b a b a b \dots}$$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$
 a b a b ...

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & a & b & b & a$$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & a & b \end{vmatrix}$$
 $\begin{vmatrix} b & a & b & a & b \\ a & b & a & b & a & b \end{vmatrix}$ $\begin{vmatrix} b & a & b & a \\ b & a & b & a & b \end{vmatrix}$ $\begin{vmatrix} b & a & b & a \\ b & a & b & a \end{vmatrix}$ $\begin{vmatrix} b & a & b & a \\ b & a & b & a \end{vmatrix}$

$$\ldots$$
 a b a b b b $\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a b a b a b a b a b b b \end{vmatrix}$ a b a b a b \ldots

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{\mathsf{ab}} = (\mathsf{ab})^t \mathsf{bb} = \mathsf{ababababbb}.$

... a b a b b b
$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2$$

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{\mathsf{ab}} = (\mathsf{ab})^t \mathsf{bb} = \mathsf{ababababbb}.$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a & b & a \\ \uparrow & & & & & \end{vmatrix}$$
 b b b a b a b a b ...

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{\mathsf{ab}} = (\mathsf{ab})^t \mathsf{bb} = \mathsf{ababababbb}.$

$$\dots a b a b b b \begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & [a & b & a & b] b & b \end{vmatrix} a b a b a b \dots$$

$$M_{a \le b} = 4$$

$$\ldots \ a \ b \ a \ b \ b \ b \ \begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a \ b \ a \ b \ a \ b \ a \ b \ b \end{vmatrix} b \ b \ a \ b \ a \ b \ a \ b \ . \ . \ .$$

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{ab} = (ab)^t bb = ababababbb.$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a & b & a & b & b & b \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \end{vmatrix}$$
 a b a b a b ...

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{ab} = (ab)^t bb = ababababbb.$

$$M_{a < b} = 4$$

We have
$$t = \left\lceil \frac{4+3}{2} \right\rceil = 4$$
 so $T_{ab} = (ab)^t bb = ababababbb.$

$$M_{a < b} = 4$$

... a b a b b b
$$\begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a & b & a$$

$$M_{a < b} = 4$$

$$M_{a < b} = 4$$

$$... \ a \ b \ a \ b \ b \ b \ \begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a \ b \ a \ b \ a \ b \ a \ b \ b \ \begin{vmatrix} b \\ b \\ a \ b \ a \ b \ a \end{vmatrix} \ a \ b \$$

$$M_{a < b} = 4$$

$$\dots \ a \ b \ a \ b \ b \ b \ \begin{vmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ a \ b \ a \ b \ a \ b \ a \ b \ b \ b \\ \uparrow & \uparrow & \uparrow & \uparrow \uparrow \uparrow \end{vmatrix} \ a \ b \ a \ b \ a \ b \ a \ b \ . \ . \ .$$

$$M_{a < b} = 4$$

$$M_{b < a} = 5$$

Let $p = (w + k) \mod 2$.

If k is even:

•
$$M_{a < b} = \frac{k}{2} + 2 + p$$

•
$$M_{b < a} = \frac{k}{2} + 3 + p$$

If k is odd:

•
$$M_{a < b} = \lfloor \frac{k}{2} \rfloor + 3$$

•
$$M_{b < a} = \lfloor \frac{k}{2} \rfloor + 4$$

Either way, $M_{b < a} - M_{a < b} = 1$.

Wrapping up the reduction

$$S = \prod_{(a,b) \in A} T_{ab}^{q+4}$$

$$M_{wk}(S,F) = q \cdot (M_{b < a} - M_{a < b}) \cdot |F| + q \cdot M_{a < b} \cdot |A| + \lambda$$

Lemma

If $M_{b < a} > M_{a < b}$ and $\lambda < q \cdot (M_{b < a} - M_{a < b})$, then $M_{wk}(S, F)$ is minimal if and only if |F| is minimal.

Wrapping up the reduction

Lemma

If $M_{b < a} > M_{a < b}$ and $\lambda < q \cdot (M_{b < a} - M_{a < b})$, then $M_{wk}(S, F)$ is minimal if and only if |F| is minimal.

- We have seen $M_{b < a} > M_{a < b}$ for each case:
 - Case A: $M_{b < a} M_{a < b} = w k$;
 - Cases B and C: $M_{b < a} M_{a < b} = 1$.
- We count minimizers for all but 4 T_{ab} -blocks for each arc, so $\lambda \leq 4 \cdot |A| \cdot |T_{ab}|$.
- Pick q such that $q \cdot (M_{b < a} M_{a < b}) > 4 \cdot |A| \cdot |T_{ab}| \ge \lambda$.

Non-lexicographic orders

What if we can order k-mers in any way, instead of lexicographically?

- Now there are up to $(\min\{n-k+1,|\Sigma|^k\})!$ permutations to consider.
- For k = 1, this is the same as the lexicographic version.
- For $k \ge 2$, it is likely harder due to it being more general.

Open problems

- Hardness for $w = 2, k \ge 1$ (done, on arXiv)
- Hardness for non-lexicographic orders
- Algorithms, approximability, etc.