Periodicity of Degenerate Strings

Estéban Gabory, Eric Rivals, Michelle Sweering, Hilde Verbeek & Pengfei Wang Centrum Wiskunde & Informatica, Université Montpellier and CNRS

Degenerate Strings

A **degenerate string** permits a choice of several different characters at each position, as to encode several classical strings. For example $\widehat{w} = {a \\ b} {a \\ c} {b \\ c} b$ is a degenerate string; its **language** is $\mathcal{L}(\widehat{w}) = \{aab, acb, bab, bcb\}$. Two degenerate strings of the same length **match** if at every position there is a non-empty intersection. For example, ${a \\ b} {c \\ c} b$ matches ${a \\ c} {c \\ c} {b \\ c}$ as both have *acb* in their language.

Types of periods

Periodicity is a way of modeling repetitions in strings. A degenerate string \hat{w} of length n has

- weak period p when \widehat{w} 's prefix and suffix of length n - p match;
- medium period *p* when all multiples of *p* are a weak period;
- **strong period** p when a string $w \in \mathcal{L}(\widehat{w})$ has period p. For a degenerate string \widehat{w} the sets q

For a degenerate string \widehat{w} , the sets of weak, medium and strong periods are denoted by $P_w(\widehat{w})$, $P_m(\widehat{w})$ and $P_s(\widehat{w})$ respectively.

Autocorrelations

An **autocorrelation** is a 0-indexed vector representing the periods of a degenerate string. Its *p*-th element is 3 if $p \in P_s$, 2 if $p \in P_m \setminus P_s$, 1 if $p \in P_W \setminus P_m$ and 0 if $p \notin P_W$.

Characterizing period sets

 $\begin{array}{ll} P_w, P_m \text{ and } P_s \text{ are the period sets of} \\ some \text{ length-}n \text{ degenerate string iff.:} \\ i. \quad \{0\} \subseteq P_s \subseteq P_m \subseteq P_w; \\ ii. \quad p \geq \frac{n}{2} \land p \in P_w \Longrightarrow p \in P_s; \\ iii. \quad p \in P_m \text{ iff. for all } k \in \mathbb{N} \text{ with} \\ kp \in \{0, \dots, n-1\}, kp \in P_w; \\ iv. \quad p \in P_s \text{ iff. for all } k \in \mathbb{N} \text{ with} \\ kp \in \{0, \dots, n-1\}, kp \in P_s. \\ \text{These conditions are sufficient for} \\ \text{alphabets of size 3 and greater.} \end{array}$

Counting period sets

Let Ω_n^w , Ω_n^m and Ω_n^s be the families of period sets of length-n degenerate strings. We show $|\Omega_n^w| = 2^{n-1}$ and based on prior work $|\Omega_n^m| = |\Omega_n^s| = \alpha^{(n-1)(1+O(\exp((-1+\epsilon)\sqrt{\log n \log \log n})))}$ with 1.5729 < α < 1.5745.

Example

Let $\widehat{w} = {a \atop b} {b \atop c} {c \atop c} {c \atop c}$. Its periods are $P_w(\widehat{w}) = {0,1,2,4}$, $P_m(\widehat{w}) = {0,2,4}$ and $P_s(\widehat{w}) = {0,4}$. The autocorrelation of \widehat{w} is 31203.

	$ {a \atop b} {b \atop c} {b \atop c} {c \atop c} {a \atop c} $	
0	$ {a \atop b} {b \atop c} {b \atop c} {c \atop c} {a \atop c} $	
1	$ \begin{cases} a \\ b \end{cases} \begin{cases} b \\ c \end{cases} \begin{cases} b \\ c \end{cases} c $	${a \\ c}$
2	$ \begin{cases} a \\ b \end{cases} \begin{cases} b \\ c \end{cases} \begin{cases} b \\ c \end{cases} $	$c {a \\ c}$
3	${a \atop b} {b \atop c}$	$\begin{cases} b \\ c \end{cases} c \begin{cases} a \\ c \end{cases}$
4	${a \\ b}$	$ \begin{cases} b \\ c \end{cases} \begin{cases} b \\ c \end{cases} c \begin{cases} a \\ c \end{cases} $

Other contributions

- We characterize the structure of autocorrelations.
- We show the sets of autocorrelations form lattices.
- We give formulae for the number of degenerate strings with a given autocorrelation, by counting independent sets in graphs.